• Navigation überspringen
  • Zur Navigation
  • Zum Seitenende
Organisationsmenü öffnen Organisationsmenü schließen
Friedrich-Alexander-Universität EmpkinS
  • FAUZur zentralen FAU Website
Suche öffnen
  • Campo
  • StudOn
  • FAUdir
  • Stellenangebote
  • Lageplan
  • Hilfe im Notfall
Friedrich-Alexander-Universität EmpkinS
Menu Menu schließen
  • About
    • CRC EmpkinS
    • Definitions
    • Overview
    • EmpkinSLab
    Portal About
  • People
  • Research
    • Overview
    • Research Program
    • Sub-Projects
    • Publications
    • Awards
    • GAPs
    • Collaborations
    • Research stay abroad
    Portal Research
  • Activities
    • Involvement
    • Events
      • Internal Events
      • Public Events
      • Scientific Events
    • Equal Opportunities
    • News
    Portal Activities
  • iRTG
    • Introduction to iRTG
    • Supporting Program
    • Supervision Agreement
    • iRTG Events / Calendar
    • Call for Scholarship Applications
    • Research stay abroad
    Portal iRTG
  1. Startseite
  2. Research
  3. Sub-Projects
  4. Subproject A05

Subproject A05

Bereichsnavigation: Research
  • Overview
  • Research Program
  • Sub-Projects
    • Subproject A01
    • Subproject A02
    • Subproject A03
    • Subproject A04
    • Subproject A05
    • Subproject B01
    • Subproject B02
    • Subproject B03
    • Subproject B04
    • Subproject C01
    • Subproject C02
    • Subproject C03
    • Subproject C04
    • Subproject D01
    • Subproject D02
    • Subproject D03
    • Subproject D04
    • Subproject D05
    • Subproject E
  • Collaborations
  • GAPs
  • Awards

Subproject A05

Subproject A05

Electro-optic Microstructure- and Micromotion-Sensor

The A05 project is developing a new laser-based sensor capable of detecting micro-motion in individual muscles. The main advantage over current systems is its contactless and wireless measurement capabilities, which can enhance medical diagnoses for stress and depression. The novel sensor combines the coherent optical Frequency Domain Reflectometry (COFDR) technique with the dual comb approach. A specific challenge associated with this approach is filtering the measurement signal from the noise. Since this is a medical application, the laser used must have low power due to scattering and absorption caused by the interaction with the skin surface, resulting in a weak received light. To maximize the signal-to-noise ratio, careful selection and optimization of the individual components are necessary. The final step involves expanding individual comb lines using dispersive elements, like an optical grating, so that the muscles can be observed as a grid instead of a point.

 

Externen Inhalt anzeigen

An dieser Stelle sind Inhalte eines externen Anbieters (YouTube) eingebunden. Beim Anzeigen können Daten an Dritte übertragen oder Cookies gespeichert werden, deshalb ist Ihre Zustimmung erforderlich.

Weitere Informationen und die Möglichkeit zum Widerruf finden Sie in unserer Datenschutzerklärung.

Ich stimme zu

Contacts

Christian Carlowitz

Dr.-Ing. Christian Carlowitz, Akad. Rat

Principal Investigator

Bernhard Schmauß

Prof. Dr.-Ing. Bernhard Schmauss

Principal Investigator

Marius Schmidt

Marius Schmidt, M.Sc

Doctoral Candidate

 

 

Additional Information

  • Schmidt M., Carlowitz C.:
    Efficient Synthesis of Broadband Linear Frequency-Modulated Quadrature Signals for Coherent Electro-Optical Sensor Systems. IEEE/MTT-S International Microwave Symposium, IMS 2024 (Washington, DC, 16 Juni 2024 – 21 Juni 2024). DOI: 10.1109/IMS40175.2024.10600286
  • Schmidt M., Sadeghi M., Rahimi F., Eskofier B., Buglagil A., Schmauß B., Carlowitz C.:
    Realtime Laser Beam Steering and Calibration Method for Coherent Biomedical Distance and Motion Sensing. CLEO: Science and Innovations in CLEO 2024, CLEO: S and I 2024 in Proceedings CLEO 2024, Part of Conference on Lasers and Electro-Optics 2024 (Charlotte, NC, USA, 5 Mai 2024 – 10 Mai 2024)
  • Vossiek M., Haberberger N., Krabbe L., Hehn M., Carlowitz C., Stelzig M.:
    A Tutorial on the Sequential Sampling Impulse Radar Concept and Selected Applications. In: IEEE Journal of Microwaves 3 (2023), S. 523-539. ISSN: 2692-8388. DOI: 10.1109/JMW.2022.3228724
Friedrich-Alexander-Universität
Erlangen-Nürnberg

Schlossplatz 4
91054 Erlangen
  • Imprint
  • Privacy
  • Accessibility
  • Intranet
  • Instagram
  • X
  • LinkedIn
  • Youtube
Nach oben